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Abstract
In the quantization of a rotating rigid body, a top, one is concerned with the
Hamiltonian operator Lα = α2

0L
2
x + α2

1L
2
y + α2

2L
2
z, where α0 � α1 � α2. An

explicit formula is known for the eigenvalues of Lα in the case of the spherical
top (α1 = α2 = α3) and symmetrical top (α1 = α2 �= α3) (Landau and Lifshitz
1981 Quantum Mechanics: Non-Relativistic Theory 3rd edn (Portsmouth, NH:
Butterworth-Heinemann)). However, for the asymmetrical top, no such explicit
expression exists, and the study of the spectrum is much more complex. In this
paper, we compute the semiclassical density of states for the eigenvalues of the
family of operators Lα = α2

0L
2
x + α2

1L
2
y + α2

2L
2
z for any α0 < α1 < α2.

PACS number: 05.45.Mt
Mathematics Subject Classification: 81Q50, 35P20

1. Introduction

Let S2 ⊆ R
3 be the 2-sphere and let −�S2 be the constant curvature spherical Laplacian on

S2. It is well known that the spectrum of −�S2 consists of eigenvalues λ given by

λk = k(k + 1), k = 0, 1, 2, . . . .

Moreover, the eigenspace corresponding to λk is of dimension 2k + 1 and a basis of
eigenfunctions is obtained by taking the standard spherical harmonics of degree k, i.e.

Ym
k (θ, φ) = P m

k (cos θ) eimφ, |m| � k,

where P m
k is the associated Legendre function of the first kind. For a more detailed treatment

of the spectral theory of �S2 , we refer the reader to [Fo].
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1751-8113/08/185205+15$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/18/185205
http://stacks.iop.org/ JPhysA/41/185205


J. Phys. A: Math. Theor. 41 (2008) 185205 A Agnew and A Bourget

From the fact that the eigenvalues λk = k(k + 1) of −�S2 are of multiplicity 2k + 1, it is
easy to see that the spectrum of −�S2 has clustering. A nice way to illustrate this fact is to
observe that for any Schwartz function ϕ on R

1

2k + 1

k∑
j=−k

ϕ

(√
λk

k

)
= ϕ(1) + O

(
1

k

)
, (1.1)

in the semiclassical limit k → ∞ (see [M]). Expressions like those appearing on the rhs
of (1.1) are often referred to as a density of states (DOS) (see, e.g. [T1]). Together with the
mean level spacings and the pairs correlation, the DOS represents a useful quantity to measure
the spread of the spectrum.

In this paper we are interested in computing the DOS for
√−Lα, associated with the

quantum asymmetric top with the Hamiltonian Lα, where Lα is given by

Lα := (
α2

0L
2
x + α2

1L
2
y + α2

2L
2
z

)
,

and

Lx = −i(y∂z − z∂y), Ly = −i(z∂x − x∂z), Lz = −i(x∂y − y∂x).

Here, we assume that α = (
α2

0, α
2
1, α

2
2

) ∈ �3, where

�3 := {
α ∈ R

3 : 0 < α2
0 < α2

1 < α2
2

}
is the positive Weyl chamber. It is well known that −�S2 and −Lα are commuting, self-adjoint,
elliptic operators on L2(S2) and therefore possess a Hilbert basis of joint eigenfunctions—the
aforementioned spherical harmonics Y k

m [BT]. Moreover, it is easy to verify that their principal
symbols are linearly independent in T ∗(S2). For these reasons, we say that �S2 and Lα form
a quantum integrable system on S2.

An explicit formula is known for the eigenvalues of Lα in the case of the spherical top
(α1 = α2 = α3) and symmetrical top (α1 = α2 �= α3) [LL]. Although no such explicit
formula exists for the eigenvalues of the asymmetrical top (α1 �= α2 �= α3), the spectrum has
been characterized in terms of parameters associated with the Lamé equation (cf proposition
2.2 in [T2]).

For such a system, it is customary to compute the DOS of their joint spectrum (see, e.g.
[Ch, Co]). Here, we are simply concerned with the density of states measures associated with
the operators

√−Lα . In the following, we denote by Ek the eigenspace of �S2 consisting of
spherical harmonics of degree k, i.e. Ek = Span

{
Y k

m : m = −k,−k + 1, . . . , k
}

and by Pk the
projection onto Ek . We define the DOS measure associated with the operators L2

α by

dρDS(x; k, α) := 1

2k + 1

∑
λ∈σ(

√−PkLα)

δ

(
x − λ

k

)
, (1.2)

where σ(
√−PkLα) denotes the spectrum of

√−PkLα . Clearly, σ(
√−PkLα) consists of the

eigenvalues
√

λk
m,m � |k|, of

√−Lα associated with the spherical harmonics of degree k.
Our purpose here is to compute the density of states for the measure dρDS(x, k;α) in the
semiclassical regime k → ∞.

1.1. Main result

For any given α ∈ �3, let g be the function defined on the rectangle [0, π ] × [0, π/2] by

g(ξ, θ;α) = (
α2

1 − α2
0

)
(β cos ξ + (β2 − 1) sin θ) sin θ + α2

0,

where β2 = α2
1−α2

0

α2
2−α2

0
. Finally, let g+(ξ, θ;α) = max{0, g(ξ, θ;α)}.

2
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Theorem 1.1. Let g+ be defined as above. Then, we have that

w − lim
k→∞

dρDS(x, k;α) = 1

π

∫ π

0

∫ π/2

0
F(x; θ, ξ, α) cos θ dξ dθ,

where F is a convex combination of delta functions given by

F(x; θ, ξ, α) = 1
4δ

(
x − 1

2

√
g+(ξ, θ;α)

)
+ 3

4δ
(
x − 3

2

√
g+(ξ, θ;α)

)
.

The weak limit is taken with respect to Cc(R
+).

The proof of theorem 1.1 is given in the third section of the paper. In the second section,
we show how one can separate the variables for the eigenvalue problem −Lαψ = λψ and
its connection to the Lamé equation. In particular, we will show how the spectrum of the
operators −Lα can be explicitly computed through the Lamé equation.

2. Separation of variables and the Lamé equation

As we mentioned earlier, −�S2 and −Lα are commuting, self-adjoint, elliptic operators on
L2(S2), hence they possess a Hilbert basis of joint eigenfunctions that form a class of spherical
harmonics. Rather than working with the standard spherical harmonics Ym

k , we introduce a
more suitable class of spherical harmonics for our purpose, the so-called Lamé harmonics
[BT, WW].

In terms of the Euclidean coordinates (x, y, z) ∈ R
3, the Lamé harmonics of degree k are

written as

ψ(x, y, z) = xγ1yγ2zγ3

1
2 (k−|γ |)∏

j=0

(
x2

θj − α2
0

+
y2

θj − α2
1

+
z2

θj − α2
2

)
, (2.1)

where γi ∈ {0, 1} and |γ | = γ1 + γ2 + γ3; the value of |γ | is chosen so that k − γ is even. The
values of the parameters θj are determined by the condition �

R
3ψ = 0. A simple computation

shows that the θj s must satisfy Niven’s equation

2∑
j=0

γj

θi − αj

+
∑
j �=i

1

θi − θj

= 0, i = 1, . . . ,
1

2
(k − |γ |).

Based on Whittaker–Watson [WW] terminology, we say that ψ is of the first, second,
third or fourth species if |γ | = 0, |γ | = 1, |γ | = 2 or |γ | = 3, respectively. Note that
there is no Lamé harmonics of the second and fourth species for k even, whereas for k odd,
there is none of the first and third species. We will see later on that there exists, respectively,
k/2 + 1, 3(k + 1)/2, 3k/2 and (k − 1)/2 linearly independent Lamé harmonics of the first,
second, third and fourth species. In particular, for any positive integer k, there exist 2k + 1
linearly independent Lamé harmonics, hence they form a basis for the space of spherical
harmonics.

2.1. Sphero-conal coordinates

In order to describe the Lamé harmonics in greater detail, it is useful to introduce a different
system of coordinates on S2, namely the sphero-conal coordinates [Sp, Vo]. We denote these
by (u1, u2). They are defined for any given positive real constants α2

0 < α2
1 < α2

2 by the zeros

3
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Figure 1. The graph of R(u) for fixed values of x, y, z and αi . The αi correspond to the vertical
asymptotes. The intersections with the u-axis are the two roots of R(u) corresponding to the values
of ui .

of the rational function

R(u) = x2

u − α2
0

+
y2

u − α2
1

+
z2

u − α2
2

,

where (x, y, z) ∈ R
3. From the graph of R(u), it is easy to see that α2

0 < u1 < α2
1 < u2 < α2

2 .
The equation R(u) = 0 is invariant under rescaling (x, y, z) �→ (tx, ty, tz), so the

coordinates (u1, u2) are indeed coordinates on S2 under the assumption x2 +y2 +z2 = 1. They
take their name from the fact that they can be obtained by the intersection of the unit sphere
with confocal cones.

The relations between the sphero-conal and Euclidean coordinates are given by

x2 =
(
u1 − α2

0

)(
u2 − α2

0

)
(
α2

2 − α2
0

)(
α2

1 − α2
0

) ,

y2 =
(
u1 − α2

1

)(
u2 − α2

1

)
(
α2

2 − α2
1

)(
α2

0 − α2
1

) ,

z2 =
(
u1 − α2

2

)(
u2 − α2

2

)
(
α2

0 − α2
2

)(
α2

1 − α2
2

) .

In particular, (u1, u2) form an orthogonal system of coordinates on S2. This can easily be seen
by considering the vectors 	ri = (∂ui

x, ∂ui
y, ∂ui

z) for which

	r1 · 	r2 = x2(
u1 − α2

0

)(
u2 − α2

0

) +
y2(

u1 − α2
1

)(
u2 − α2

1

) +
z2(

u1 − α2
2

)(
u2 − α2

2

)
= R(u1) − R(u2)

u2 − u1

= 0.

4
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2.2. Separation of variables

The great advantage of the sphero-conal coordinates over other coordinate systems on S2

is that they allow us to simultaneously separate variables in both of the spectral problems
for −�S2 and −Lα (see [Sp]). For example, in these coordinates, the Laplace equation
−�S2ψ = k(k + 1)ψ takes the form

4

u2 − u1

2∑
i=1

(−1)i
[√

A(ui)
∂

∂ui

(√
A(ui)

∂ψ

∂ui

)]
= k(k + 1)ψ, (2.2)

where A(ui) = (
ui − α2

0

)(
ui − α2

1

)(
ui − α2

2

)
. One can then separate the variables and write

ψ(u1, u2) = ψ1(u1)ψ2(u2). Denoting the separation constant by −λ, it follows directly
from (2.2) that both ψ1 and ψ2 are solutions of the same Lamé equation

A(x)ψ ′′
i (x) + 1

2A′(x)ψ ′
i (x) = 1

4 (k(k + 1)x − λ)ψi(x) (i = 1, 2). (2.3)

From the general theory of Lamé equation [WW], it is well known that the solutions
of (2.3) are given by the Lamé functions

ψ1(x) = ψ2(x) = ∣∣x − α2
0

∣∣γ1/2∣∣x − α2
1

∣∣γ2/2∣∣x − α2
2

∣∣γ3/2
φ(x), (2.4)

where φ is a polynomial of degree (k − |γ |)/2 with γ chosen as above. Consequently, the
joint eigenfunctions of −�S2 and −Lα are given by

ψ(u1, u2) =
2∏

j=1

∣∣uj − α2
0

∣∣γ1/2∣∣uj − α2
1

∣∣γ2/2∣∣uj − α2
2

∣∣γ3/2
φ(uj ). (2.5)

Note that, up to a constant depending only on the α’s and the solutions θj ’s of Niven’s
equations, (2.5) are the Lamé harmonics (2.1) expressed in the sphero-conal coordinates.

Based on these observations, we can now compute the eigenvalues of −Lα . Let E be such
an eigenvalue; we will show that E = λ, the separation constant obtained previously. First,
we use the fact that

−(
L2

x + L2
y + L2

z

)
ψ = −�S2ψ = k(k + 1)ψ

to deduce that (
α2

0 − α2
1

)
L2

xψ +
(
α2

2 − α2
1

)
L2

zψ = (
α2

1k(k + 1) − E
)
ψ.

In terms of the sphero-conal coordinates, we can rewrite the last equation as

4

u2 − u1

[(
α2

1 + u2
)√

A(u1)
∂

∂u1

(√
A(u1)

∂ψ

∂u1

)

− (α2
1 + u1)

√
A(u2)

∂

∂u2

(√
A(u2)

∂ψ

∂u2

)]
= (

α2
1k(k + 1) − E

)
ψ.

Upon separating the variables, ψ(u1, u2) = ψ1(u1)ψ2(u2), we obtain

A(ui)ψ
′′
i (ui) + 1

2A′(ui)ψ
′
i (ui) = 1

4 (µui − E)ψi(ui) (i = 1, 2). (2.6)

By comparison of (2.6) with (2.3), we conclude that µ = k(k + 1) and E = λ as desired.
All that remains to prove is that we get all the possible eigenvalues of −Lα in this way. This
is a consequence of the following result due to Stieltjes and Szegö (see [Sz], section 6.3):

Theorem 2.1. Let ρ0, ρ1, ρ2 be any three real positive numbers and let a1, a2, a3 be any
three real distinct numbers. There exist exactly m + 1 distinct real numbers ν for which the
generalized Lamé equation

A(x)y ′′(x) +
2∑

j=0

ρj

∏
i �=j

(x − ai)y
′(x) = (m(m + 1 + |ρ|)x − ν)y(x) (2.7)

5
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Table 1. The values taken by ν.

Species γ0, γ1, γ2 ν

1 γ0 = γ1 = γ2 = 0 λ

2 γ0 = 1, γ1 = γ2 = 0 λ − α2
1 − α2

2
γ1 = 1, γ0 = γ2 = 0 λ − α2

0 − α2
2

γ2 = 1, γ0 = γ1 = 0 λ − α2
0 − α2

1

3 γ0 = 0, γ1 = γ2 = 1 λ − 4α2
0 − α2

1 − α2
2

γ1 = 0, γ0 = γ2 = 1 λ − α2
0 − 4α2

1 − α2
2

γ2 = 0, γ0 = γ1 = 1 λ − α2
0 − α2

1 − 4α2
2

4 γ0 = γ1 = γ2 = 1 λ − 4(α2
0 + α2

1 + α2
2)

has a polynomial solution y of degree m. Moreover, the m + 1 polynomial solutions obtained
in this way are linearly independent.

Replacing the expression of the Lamé function ψi given in (2.4) into (2.3), one can easily
verify that the polynomial φ of degree (k − |γ |)/2 satisfies the generalized Lamé equation

A(x)φ′′(x) +
2∑

j=0

(
γj +

1

2

)∏
l �=j

(
x − α2

l

)
φ′(x) = 1

4
((k − |γ |)(k + |γ | + 1)x

− λ + D(α, γ ))φ(x), (2.8)

where D(α, γ ) = (
α2

0 + α2
1

)
γ2 +

(
α2

0 + α2
2

)
γ1 +

(
α2

1 + α2
2

)
γ0 + 2γ0γ1α

2
2 + 2γ1γ2α

2
0 + 2γ0γ2α

2
1 .

The values taken by ν = λ − D(α, γ ) in terms of the different values of γ are given in
table 1.

By Stieltjes’ result with ρi = γi + 1/2, we deduce that there are exactly (k − |γ |)/2 + 1
distinct-value ν for which (2.8) has a polynomial solution φ of degree (k−|γ |)/2. In particular,
the number of Lamé harmonics of degree k and of specie 1 is k/2 + 1, of specie 2 is 3(k + 1)/2,
of specie 3 is 3k/2 and of specie 4 is (k −1)/2. It follows that for any k ∈ N, there exist 2k + 1
linearly independent Lamé harmonics, so they form a Hilbert basis of L2(S2).

Furthermore, for each k ∈ N, we also obtain 2k + 1 values of ν (multiplicity included)
to which correspond by table 1, 2k + 1 values of λ. In other words, the eigenvalues of the
linearly independent Lamé harmonics of degree k are exactly given by the 2k + 1 values of λ.
Therefore, we have shown the first part of the following theorem.

Theorem 2.2. Let α = (
α2

0, α
2
1, α

2
2

) ∈ �3, then the spectrum of the operator −Lα is given by
all numbers λ appearing on the rhs of the Lamé equation (2.3). Moreover, the λs corresponding
to the Lamé harmonics of degree k lie within the interval

(
α2

0(k − 3)(k + 1), α2
2k(k + 4) + 4|α|).

The second part is an immediate consequence of a result due to Van Vleck [Va] where
he proves that all numbers ν corresponding to the polynomial solutions of degree m of the
generalized Lamé equation (2.7) lie inside the interval (α2

0m(m + 1 + |ρ|), α2
2m(m + 1 + |ρ|)).

It follows from this and (2.8) that the eigenvalues λ lie inside the interval

min
γ

{
α2

0(k − |γ |)(k + |γ | + 1) + D(α, γ )
}

� λ � max
γ

{
α2

2(k − |γ |)(k + |γ | + 1) + D(α, γ )
}
.

Since γi ∈ {0, 1}, it is then easy to see that

min
γ

{
α2

0(k − |γ |)(k + |γ | + 1) + D(α, γ )
}

� α2
0(k − 3)(k + 1)

6
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and

max
γ

{
α2

2(k − |γ |)(k + |γ | + 1) + D(α, γ )
}

� α2
2k(k + 4) + 4|α|

from which the conclusion of the theorem follows.

3. Proof of theorem 1.1

Based on the different species of the eigenvalues, we partition the spectrum of −Lα into four
disjoint subsets σ k

1 , . . . , σ k
4 defined by

σ k
i := {λ : λ is an eigenvalue of a Lamé harmonics of degree k and of species i}.

For each k ∈ N, we denote the eigenvalues of
√−Lα corresponding to the 2k + 1 Lamé

harmonics of degree k by√
λk

−k(α) <

√
λk

−k+1(α) < · · · <

√
λk

k(α).

Based on the definition of the σi , we can decompose dρDS(ϕ; k, α) into four disjoints
sums, i.e.

dρDS(ϕ; k, α) = 1

2k + 1

k∑
j=−k

ϕ

⎛
⎝

√
λk

j (α)

k

⎞
⎠ + O

(
1

k

)

= 1

2k + 1

4∑
i=1

∑
λ∈σ k

i

ϕ

(√
λ

k

)
+ O

(
1

k

)
. (3.1)

As we mentioned before, when k is even, only the Lamé harmonics of the first and third
species will contribute to the sum above, whereas only the second and fourth species will
contribute when k is odd. Therefore, we can write

k∑
j=−k

ϕ

⎛
⎝

√
λk

j

k

⎞
⎠ =

⎧⎪⎨
⎪⎩

∑
λ∈σ k

1
ϕ
(√

λ
k

)
+
∑

λ∈σ k
3
ϕ
(√

λ
k

)
, k even∑

λ∈σ k
2
ϕ
(√

λ
k

)
+
∑

λ∈σ k
4
ϕ
(√

λ
k

)
, k odd.

The key observation here is that the eigenvalues can be obtained by simply regarding the
polynomial solution of the generalized Lamé equation (2.8). More precisely, we introduce the
sets Zi, i = 1, 2, 3, 4, defined by

Zk
i := {

ν
∣∣ There exist λ ∈ σ k

i and γ ∈ {0, 1}3 such that ν = λ − D(α, γ )
}
.

Consequently, the four sums above can now be taken over the sets Zk
i instead of σ k

i . That
is, ∑

λ∈σ k
i

ϕ

(√
λ

k

)
=

∑
ν∈Zk

i

ϕ

(√
ν + D(α, γ )

k

)
. (3.2)

Moreover, since ϕ is compactly supported, we can approximate uniformly ϕ by smooth
functions. Without loss of generality, we may therefore assume that ϕ satisfies

ϕ

(√
ν + D(α, γ )

k

)
= ϕ

(√
ν

k

)
+ O

(
1

k

)
since D(α, γ ) = O(1). Equation (3.2) easily implies that

1∣∣σ k
i

∣∣ ∑
λ∈σ k

i

ϕ

(√
λ

k

)
= 1∣∣Zk

i

∣∣ ∑
ν∈Zk

i

ϕ

(√
ν

k

)
+ O

(
1

k

)
. (3.3)

7
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The asymptotic of the sums in the rhs of (3.3) is obtained through the following lemma.

Lemma 3.1. Let ν0, . . . , νm denote the m + 1 real numbers for which the Lamé equation

A(x)y ′′(x) +
2∑

j=0

ρj

∏
i �=j

(x − α2
i )y

′(x) = (m(m + 1 + |ρ|)x − ν)y(x)

admits a polynomial solution y of degree m. For any ϕ ∈ Cc(R
+), we have that

1

m + 1

m∑
j=0

ϕ

(√
νj

m

)
= 1

π

∫ π

0

∫ π/2

0
ϕ(

√
g+(ξ, θ;α)) cos θ dθ dξ + O

(
1

m

)
,

where g+(ξ, θ;α) = max
{
0,

(
α2

1 −α2
0

)
(β sin θ cos ξ + (β2 − 1) sin2 θ) + α2

0

}
and β2 = α2

2−α2
1

α2
1−α2

0
.

The proof of lemma 3.1 is rather long and technical, so we prefer to postpone it until
the end of the present section. With this lemma in hand, we can now complete the proof of
theorem 1.1. As a consequence of lemma 3.1, we obtain for k even,

1

2k + 1

k∑
j=−k

ϕ

⎛
⎝

√
λk

j (α)

k

⎞
⎠ = 1

2k + 1

⎡
⎣∑

λ∈σ k
1

ϕ

(√
λ

k

)
+

∑
λ∈σ k

3

ϕ

(√
λ

k

)⎤
⎦

= 1

2k + 1

⎡
⎣∑

ν∈Zk
1

ϕ

(√
ν

k

)
+

∑
ν∈Zk

3

ϕ

(√
ν

k

)⎤
⎦ + O

(
1

k

)

= 1

4

⎡
⎣ 1

k/2 + 1

∑
ν∈Zk

1

ϕ

(
1

2

√
ν

k/2

)⎤
⎦

+
3

4

⎡
⎣ 1

3k/2

∑
ν∈Zk

3

ϕ

(
3

2

√
ν

3k/2

)⎤
⎦ + O

(
1

k

)
. (3.4)

By lemma 3.1, the first sum in the brackets of (3.4) is equal to

1

π

∫ π

0

∫ π/2

0
ϕ

(
1

2
g+(ξ, θ;α)

)
cos θ dθ dξ + O

(
1

k

)
, (3.5)

and the second sum in the brackets of (3.4) is equal to

1

π

∫ π

0

∫ π/2

0
ϕ

(
3

2
g+(ξ, θ;α)

)
cos θ dθ dξ + O

(
1

k

)
. (3.6)

Combining equations (3.5) and (3.6), we deduce that

1

2k + 1

k∑
j=−k

ϕ

⎛
⎝

√
λk

j (α)

k

⎞
⎠ = 1

π

∫ π

0

∫ π/2

0
F(ϕ; ξ, θ;α) cos θ dθ dξ + O

(
1

k

)
, (3.7)

where the function F is defined by

F(ϕ; ξ, θ;α) = 1
4ϕ

(
1
2g(ξ, θ;α)

)
+ 3

4ϕ
(

3
2g(ξ, θ;α)

)
.
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The conclusion of theorem 1.1 for k even then follows from (3.1) and (3.7). Similarly, for
k odd, we have that

1

2k + 1

k∑
j=−k

ϕ

⎛
⎝

√
λk

j (α)

k

⎞
⎠ = 1

2k + 1

⎡
⎣∑

λ∈σ k
2

ϕ

(√
λ

k

)
+

∑
λ∈σ k

4

ϕ

(√
λ

k

)⎤
⎦

= 1

2k + 1

⎡
⎣∑

ν∈Zk
2

ϕ

(√
ν

k

)
+

∑
ν∈Zk

4

ϕ

(√
ν

k

)⎤
⎦ + O

(
1

k

)

= 3

4

⎡
⎣ 1

3k/2

∑
ν∈Zk

2

ϕ

(
3

2

√
ν

3k/2

)⎤
⎦

+
1

4

⎡
⎣ 1

(k − 1)/2

∑
ν∈Zk

4

ϕ

(
1

2

√
ν

k/2

)⎤
⎦ + O

(
1

k

)
. (3.8)

As for the case k even, we apply lemma 3.1 to conclude that (3.7) holds when k is a
positive odd integer.

To complete the proof of theorem 1.1, it remains to prove lemma 3.1.

3.1. Proof of lemma 3.1

According to theorem 2.1 with a0 = −1, a0 = 0 and a2 = β2 > 0, there exist m + 1 real
values ν̃0, . . . , ν̃m for which the generalized Lamé equation

x(x − β2)(x + 1)Y ′′(x) +
[
ρ0x(x − β2) + ρ1(x + 1)(x − β2)

+ ρ2x(x + 1)] Y ′(x) = (m(m + 1 + |ρ|)x − ν̃)Y (x) (3.9)

admits a polynomial solution Y of degree m. First, we show that for any ϕ ∈ Cc(R
+)

1

m + 1

m∑
j=0

ϕ

(
ν̃j

m2

)
= 1

π

∫ π

0

∫ π/2

0
ϕ (h(ξ, θ;α)) cos θ dθ dξ + O

(
1

m

)
, (3.10)

where h(ξ, θ;α) = β sin θ cos ξ + (β2 − 1) sin2 θ .
The starting point in proving (3.10) consists of establishing a three-term recurrence

relation satisfied by the Lamé polynomials Y. In particular, this will allow us to obtain the
eigenvalues of −Lα as those of some tridiagonal matrix.

More precisely, we consider a Lamé polynomial of degree m of the form

Y (x) =
m∑

j=0

ajx
j .

If we replace the expression for Y (x) into the Lamé equation (3.9), we obtain the following
three-term recurrence relation:⎧⎪⎨
⎪⎩

B0(ρ, β)a1 = ν̃a0

Aj(ρ, β)aj + Bj(ρ, β)aj+1 + Cj(ρ, β)aj−1 = ν̃aj , (j = 1, . . . , m − 1)

Am(ρ, β) + Cm(ρ, β)am−1 = ν̃am,

(3.11)

where a−1 = 0, am+1 = 0 and⎧⎪⎨
⎪⎩

Aj(ρ, β) = (β2 − 1)j (j − 1 + ρ1) − ρ2j + β2ρ0j

Bj (ρ, β) = (j + 1)(j + ρ1)β
2

Cj(ρ, β) = m(m + 1 + |ρ|) − (j − 1)(j − 2 + |ρ|).
(3.12)

9
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These relations are more conveniently expressed in matrix form. Indeed, if we introduce
the tridiagonal matrix A = (aij ), i, j = 0, . . . , m, given by

aij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bi(ρ, β)

µ
if i = j − 1

Ai(ρ, β)

µ
if i = j

Ci(ρ, β)

µ
if i = j + 1,

(3.13)

where µ = m(m + 1 + |ρ|), then the three-term recurrence relation (3.11) implies that

AX = ν̃

µ
X,

where X = (a0, a1, . . . , am)T . Throughout the rest of the proof, we denote by ν̃0
µ

, . . . , ν̃m

µ

the m + 1 eigenvalues of A. Note that the components of the eigenvectors X are exactly the
coefficients of the Lamé polynomials Y.

We will divide the rest of the proof into several lemmas. The first one consists of
computing the trace of the powers An for any n ∈ N.

Lemma 3.2. We have that

Tr(An) =
[[n/2]]∑
j=0

(
n

j, j, n − 2j

) m∑
i=1

(
1 − i2

m2

)j (
i2

m2

)n−j

(β2 − 1)n−2jβ2j + O(1) (3.14)

for any positive integer n. Here, [[n/2]] denotes the greatest integer less than or equal to n/2,

and O(1) represents a bounded function of m.

Proof of lemma 3.2. We decompose A as a sum of three matrices, A = L + D + U , where
D = 1

µ
diag(0, A1, . . . , Am) and

L = 1

µ

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
C1 0 0 · · · 0 0
0 C2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · Cm 0

⎞
⎟⎟⎟⎟⎟⎠ , U = 1

µ

⎛
⎜⎜⎜⎜⎜⎝

0 B0 0 0 · · · 0
0 0 B1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · Bm−1

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ .

The trace of An is then given by the trace of (L + D + U)n. When we expand the last
expression, the non-commutativity of the matrices L,D and U implies that the trace of An is
the sum of 3n terms of the form

M1M2 · · ·Mn,

where Mi = L,D or U. This is unmanageable in its full generality for arbitrary n. However,
we are interested primarily in the asymptotic information contained in the trace, which allows
us to make significant simplifications.

First, we point out that our need to consider An stems from the fact that we will use
polynomials to approximate the continuous function ϕ in lemma 3.1. Thus, we need to extract
asymptotic information about Tr(An) for fixed, but arbitrary n. In our case, we will ultimately
be taking a limit m → ∞ for fixed n, and so in this limit, n/m → 0.

Second, we exploit the fact that the terms M1M2 · · · Mn are the products of matrices,
each being lower diagonal (L), diagonal (D) or upper diagonal (U). This allows us to make
definite statements about the zero structure of the matrix products, i.e., the entries that are

10
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necessarily zero in the matrix product. For example, multiplication on the left or right by a
diagonal matrix preserves the zero structure: LD and DL are both lower diagonal if L is.
The analogous statement holds for UD and DU. The effect of multiplying by L or U is only
slightly less simple. In fact, as far as the effect on zero structure is concerned, L and U behave
like quantum mechanical creation and annihilation operators, respectively. In detail, if we
denote by RM (respectively, LM ) the operation of right (respectively, left) multiplication by a
matrix M, then for any matrix B:

(i) RUB corresponds to shifting all columns of B one place to the right: coli+1(RUB) =
coli (B), creating a zero column in the first column.

(ii) RLB corresponds to shifting all columns of B one place to the left: coli−1(RUB) =
coli (B), creating a zero column in the last column.

(iii) LUB corresponds to shifting all rows of B up one place: rowi−1(RUB) = rowi (B),
creating a zero row in the last row.

(iv) LUB corresponds to shifting all rows of B down one place: rowi+1(RUB) = rowi (B),
creating a zero row in the first row.

As a result, the diagonal of a term M1M2 · · · Mn in An will have zero trace unless the
number of factors j of L is the same as the number of factors of U. The remaining n − 2j

factors must all be D. Thus, many of the 3n terms do not contribute to Tr(An).

The last issue concerns the lack of commutativity in the terms that do contribute to the
trace. Some of these terms are of the form

(LU)jDn−2j , j = 0, . . . , [[n/2]]. (3.15)

Since LU and D are diagonal, the trace is particularly simple to compute in the case of the
canonical terms (3.15):

Tr(M1M2 · · · Mn) = Tr((LU)jDn−2j ) =
m∑

i=1

(
1 − i2

m2

)j(
i2

m2

)n−j

(β2 − 1)n−2jβ2j + O(1),

where O(1) is easily seen to be a bounded function of m. Noncanonical terms will differ from
canonical terms only at order O(n/m) = O(1/m), and so for asymptotic purposes, we may
assume that all terms have the canonical form (3.15). To see this, note that the multiplication
of matrices of the form L,D and U constitutes a shifting of their rows and columns. For terms
with n factors, the number of shifts is at most n. Being products of matrices that are (lower,
upper) diagonal, the noncanonical terms will yield sums of products of the form

�p�q,

where �p,�q ∈ {Al/µ,Bl/µ,Cl/µ|l = 0, 1, . . . , m} and |p − q| = O(n). As an example,

Ap

µ

Bq

µ
= β2(β2 − 1)

p2q2

m4
+ O

(
1

m

)

= β2(β2 − 1)
p2(p + O(n))2

m4
+ O

(
1

m

)

= β2(β2 − 1)
p4

m4
+ O(n/m) + O

(
1

m

)

= β2(β2 − 1)
p4

m4
+ O

(
1

m

)
.

11
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Since there are exactly
(

n

j,j,n−2j

)
matrices M1M2 · · · Mn that contain j factors of L, j

factors of U and (n − 2j) factors of D, we finally deduce that

Tr(An) =
[[n/2]]∑
j=0

(
n

j, j, n − 2j

)
Tr((LU)jDn−2j ) + O(1)

=
[[n/2]]∑
j=0

(
n

j, j, n − 2j

) m∑
i=1

(
1 − i2

m2

)j (
i2

m2

)n−j

(β2 − 1)n−2jβ2j

+ O(1). (3.16)

This completes the proof of the lemma. �

The following result deals with the inner sum
∑m

i=1

(
1 − i2

m2

)j ( i2

m2

)n−j
in (3.16). As the

following lemma shows, this sum is asymptotically given by a Beta integral.

Lemma 3.3. We have that

1

m

m∑
i=0

(
1 − i2

m2

)j (
i2

m2

)n−j

= 1

2
B(j + 1, n − j + 1/2) + O

(
1

m

)
, (3.17)

where B(p, q) is the standard Beta integral defined by

B(p, q) = 2
∫ π/2

0
cos2p−1 θ sin2q−1 θ dθ.

Proof of lemma 3.3. This is obvious. The lhs of (3.17) is a Riemann sum for the function
(1 − x2)j (x2)n−j on [0, 1], hence

1

m

m∑
i=0

(
1 − i2

m2

)j (
i2

m2

)n−j

=
∫ 1

0
(1 − x2)j (x2)n−j dx + O

(
1

m

)
.

The conclusion of the lemma follows by making the substitution x = sin θ and using the
trigonometric representation of the Beta integral. �

As a consequence of (3.16) and lemma 3.2, it follows that

1

m
Tr(An) = 1

m

m∑
i=0

(
νi

µ

)n

= 1

2

[[n/2]]∑
j=0

(
n

j, j, n − 2j

)
B(j + 1, n − j + 1/2)(β2 − 1)n−2jβ2j

+ O
(

1

m

)
. (3.19)

In order to evaluate the sum inside the integral sign, we use the sinc function defined by

sinc(x) =
⎧⎨
⎩

1 for x = 0,
sin x

x
for x �= 0.

The key point here is to observe that sinc(πx) = 0 when x is a nonzero integer, and that
sinc(0) = 1. Using this function, we can then replace the sum in (3.19) by the more

12
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appropriate sum over multi-index γ = (γ1, γ2, γ3) such that |γ | = n. More precisely, we have

[[n/2]]∑
j=0

(
n

j, j, n − 2j

)
B(j + 1, n − j + 1/2)(β2 − 1)n−2jβ2j

=
∑
|γ |=n

(
n

γ

)
(β2 − 1)γ3βγ1+γ2 B (γ ) sinc(π(γ1 − γ2)), (3.19)

where B(γ ) := B
(

γ1

2 + γ2

2 + 1, n − γ1

2 − γ2

2 + 1
2

)
. Based on the representation of sinc(x) as

the integral

sinc(π(γ1 − γ2)) = 1

2π

∫ π

−π

eiξ(γ1−γ2) dξ, (3.20)

the rhs of (3.19) can be written as

1

2π

∫ π

−π

∑
|γ |=n

(
n

γ

)
(β2 − 1)γ3βγ1+γ2 B (γ ) eiξ(γ1−γ2) dξ. (3.21)

Replacing B(γ ) by the expression

B(γ ) = 2
∫ π/2

0
(cos θ)γ1+γ2+1(sin θ)2n−γ1−γ2 dθ,

we can then use the multinomial theorem to evaluate the sum in (3.21). We obtain∑
|γ |=n

(
n

γ

)
(β2 − 1)γ3βγ1+γ2(cos θ)γ1+γ2(sin θ)2n−γ1−γ2 eiξ(γ1−γ2)

= (β cos ξ sin 2θ + (β2 − 1) sin2 θ)n. (3.22)

If we denote by h(ξ, θ) = (β2 cos ξ sin 2θ + (β2 −1) sin2 θ), then equations (3.19)–(3.22)
imply that

1

m
Tr(An) = 1

2π

∫ π

−π

∫ π/2

0
hn(ξ, θ) cos θ dθ dξ + O

(
1

m

)
.

The rest of the proof of lemma 3.1 follows by the standard functional calculus on the
Banach algebra Mm(R), the set of all matrices of order m with real entries. However, we can
also complete the proof by simply observing that for any polynomial P

1

m

m∑
i=0

Tr(P (A)) = 1

2π

∫ π

−π

∫ π/2

0
P(h(ξ, θ)) cos θ dθ dξ + O

(
1

m

)
. (3.23)

Finally, Weierstrass’ theorem implies that for any compactly continuous function ϕ and
any ε > 0, there exists a polynomial P with

sup
x

|ϕ(x) − P(x)| < ε/3. (3.24)

This implies

1

2π

∫ π

−π

∫ π/2

0
|φ(h(ξ, θ)) − P(h(ξ, θ))| cos θ dθ dξ < ε/3. (3.25)

The spectral mapping theorem (cf [RS], theorem VII.I (e)) and (3.24) imply∣∣∣∣1

k
Tr(ϕ(A)) − 1

k
Tr(P (A))

∣∣∣∣ < ε/3. (3.26)

13
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We choose m big enough in (3.23) so that∣∣∣∣∣ 1

m

m∑
i=0

Tr(P (A)) − 1

2π

∫ π

−π

∫ π/2

0
P(h(ξ, θ)) cos θ dθ dξ

∣∣∣∣∣ < ε/3. (3.27)

As a consequence of (3.25)–(3.27)

lim
m→∞

1

m

m∑
i=0

Tr(ϕ (A)) = 1

2π

∫ π

−π

∫ π/2

0
ϕ(h(ξ, θ)) cos θ dθ dξ. (3.28)

This completes the proof of (3.10) for a0 = −1, a1 = 0 and a2 = β2. In the case of
interest to us, namely a0 = α2

0, a1 = α2
1 and a2 = α2

2, we use the fact that the Lamé equation
is invariant under affine transformations to make the change of variable x �→ x

(
α2

1 −α2
0

)
+ α2

0.
If we let y be the function defined by y(x) := Y

(
x
(
α2

1 − α2
0

)
+ α2

1

)
, then it is not difficult to

show that y satisfies the standard Lamé equation

A(x)y ′′(x) +
2∑

j=0

ρj

∏
i �=j

(
x − α2

i

)
y ′(x) = (µx − ν)y(x),

where ν = ν̃
(
α2

1 − α2
0

)
+ α2

1µ. From the fact that −1 � ν̃
µ

� β2, we easily deduce that

α2
0 � ν

µ
� α2

2.

Furthermore, if we introduce the function ϕα(x) := ϕ
(
x
(
α2

1 − α2
0

)
+ α2

1

)
for any

ϕ ∈ Cc(R
+), then we obtain that

1

m

m∑
i=0

ϕ
( νi

m2

)
= 1

m

m∑
i=0

ϕ

(
ν̃i

m2
(α2

1 − α2
0) + α2

1

)
+ O

(
1

m

)

= 1

m

m∑
i=0

ϕα

(
ν̃i

m2

)
+ O

(
1

m

)
. (3.29)

It then follows by (3.28) and (3.29) that

lim
m→∞

1

m

m∑
i=0

ϕ
( νi

m2

)
= 1

2π

∫ π

−π

∫ π/2

0
ϕ(g(ξ, θ;α)) cos θ dθ dξ, (3.30)

where g(ξ, θ;α) = h(ξ, θ;α)
(
α2

1 − α2
0

)
+ α2

1. Since ϕ is supported in R
+, the last equation

remains valid if we replace g(ξ, θ;α) by g+(ξ, θ;α) = max{0, g(ξ, θ;α)} and ϕ(x) by ϕ(
√

x).
This completes the proof of lemma 3.1
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